skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pevtsova, Julia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 4, 2026
  2. Abstract We introduce an infinite variant of hypersurface support for finite-dimensional, noncommutative complete intersections. We show that hypersurface support defines a support theory for the big singularity category $$\operatorname {Sing}(R)$$ , and that the support of an object in $$\operatorname {Sing}(R)$$ vanishes if and only if the object itself vanishes. Our work is inspired by Avramov and Buchweitz’ support theory for (commutative) local complete intersections. In the companion piece [27], we employ hypersurface support for infinite-dimensional modules, and the results of the present paper, to classify thick ideals in stable categories for a number of families of finite-dimensional Hopf algebras. 
    more » « less
  3. Abstract We consider finite-dimensional Hopf algebras $$u$$ that admit a smooth deformation $$U\to u$$ by a Noetherian Hopf algebra $$U$$ of finite global dimension. Examples of such Hopf algebras include small quantum groups over the complex numbers, restricted enveloping algebras in finite characteristic, and Drinfeld doubles of height $$1$$ group schemes. We provide a means of analyzing (cohomological) support for representations over such $$u$$, via the singularity categories of the hypersurfaces $U/(f)$ associated with functions $$f$$ on the corresponding parametrization space. We use this hypersurface approach to establish the tensor product property for cohomological support, for the following examples: functions on a finite group scheme, Drinfeld doubles of certain height 1 solvable finite group schemes, bosonized quantum complete intersections, and the small quantum Borel in type $$A$$. 
    more » « less
  4. We develop a support theory for elementary supergroup schemes, over a field of positive characteristic p ⩾ 3 p\geqslant 3 , starting with a definition of a π \pi -point generalising cyclic shifted subgroups of Carlson for elementary abelian groups and π \pi -points of Friedlander and Pevtsova for finite group schemes. These are defined in terms of maps from the graded algebra k [ t , τ ] / ( t p − τ 2 ) k[t,\tau ]/(t^p-\tau ^2) , where t t has even degree and τ \tau has odd degree. The strength of the theory is demonstrated by classifying the parity change invariant localising subcategories of the stable module category of an elementary supergroup scheme. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)